Дифференциальные уравнения

Специальный курс высшей математики. Дифференциальные уравнения, краевые задачи, интегральные уравнения — обложка книги.
Специальный курс высшей математики. Дифференциальные уравнения, краевые задачи, интегральные уравнения (Пономарев К. К. ) 10.05.2025
Учебник написан в соответствии с программой по высшей математике для техников-программистов по специальности №1735, утвержденной Министерством высшего и среднего специального образования РСФСР. В книгу включен теоретический материал, который необходим программисту в его практической деятельности. Рассматриваются дифференциальные уравнения, краевые задачи и интегральные уравнения. Материал излагается доступно, приводятся подробные выводы. Включено большое количество примеров, сопровождающихся подробными решениями. В конце каждой главы имеются примеры и задачи для самостоятельного решения.
38.8М, РУС.
Дифференциальные уравнения — обложка книги.
Дифференциальные уравнения (Богданов Ю. С., Сыроид Ю. Б.) 12.04.2025
Пособие содержит основной учебный материал по курсу дифференциальных уравнений. Излагаются линейные (дифференциальные) уравнения с постоянными коэффициентами, линейные векторные уравнения со стационарным оператором, элементарные уравнения, общая теория и исследование обыкновенных уравнений и систем в нормальной форме, голоморфные уравнения, уравнения в частных производных 1-го порядка. Пособие предназначено для студентов факультетов прикладной математики и механико-математических факультетов, а также для студентов и преподавателей других факультетов с расширенной программой по математике.
27.53М, РУС.
Сборник задач по дифференциальным уравнениям — обложка книги.
Сборник задач по дифференциальным уравнениям (Филиппов А. Ф.) 04.12.2024
Сборник содержит задачи по курсу обыкновенных дифференциальных уравнений в соответствии с программой, принятой на механико-математическом факультете Московского государственного университета. Часть задач взята из известных задачников H. М. Гюнтера и Р. О. Кузьмина, Г. Н. Бермана, М. Л. Краснова и Г. И. Макаренко, учебников В. В. Степанова, Г. Филипса; большинство задач составлено заново. Более трудные задачи отмечены звездочкой. В начале каждого параграфа изложены основные методы, необходимые для решения задач этого параграфа, или даны ссылки на соответствующие учебники. В ряде случаев приведены подробные решения типовых задач.
15М, РУС.
Дифференциальные уравнения — обложка книги.
Дифференциальные уравнения (Матвеев Н. М. ) 01.12.2024
В настоящем издании по сравнению с прежними усилены разделы, связанные с современными проблемами теории обыкновенных дифференциальных уравнений. Книга является единым руководством по изучению вопросов теории обыкновенных дифференциальных уравнений и методов интегрирования. В каждой главе приводится содержание соответствующей части курса и литература, даются развернутые методические указания (включающие конспективное изложение теории), задачи для самостоятельного решения.
33.95М, РУС.
Сборник задач и упражнений по обыкновенным дифференциальным уравнениям — обложка книги.
Сборник задач и упражнений по обыкновенным дифференциальным уравнениям (Матвеев Н. М.) 01.12.2024
Содержится более полутора тысяч задач и упражнений по всем разделам университетского курса обыкновенных дифференциальных уравнений. Приводятся краткие сведения из теории, типовые примеры, ответы и указания для решения наиболее трудных задач. Для студентов вузов, обучающихся по специальности «Математика».
40.39М, РУС.
Дифференциальное и интегральное исчисления. Том 1 — обложка книги.
Дифференциальное и интегральное исчисления. Том 1 (Пискунов Н. С.) 01.12.2024
Хорошо известное Учебное пособие по математике для втузов с достаточно широкой математической подготовкой. Первый том включает разделы: введение в анализ, дифференциальное исчисление (функций одной и нескольких переменных), неопределенный и определенный интегралы. Настоящее издание не отличается от предыдущего (1978 г.). Для студентов высших технических учебных заведений.
49.21М, РУС.
Дифференциальное и интегральное исчисления. Том 2 — обложка книги.
Дифференциальное и интегральное исчисления. Том 2 (Пискунов Н. С.) 26.11.2024
Хорошо известное Учебное пособие по математике для втузов с достаточно широкой математической подготовкой. Второй том включает разделы: дифференциальные уравнения, кратные и криволинейные интегралы, интегралы по поверхности, ряды, уравнения математической физики, операционное исчисление, элементы теории вероятностей и математической статистики, матрицы. Для студентов высших технических учебных заведений.
12.06М, РУС.
Оптимальное управление — обложка книги.
Оптимальное управление (Атанс М., Фалб П. Л.) 02.11.2024
Книга американских ученых М. Атанса и П. Фалба представляет собой систематическое изложение теории оптимального управления детерминированных систем. Изложению теории оптимального управления предшествует обширное введение, где приводятся основные сведения из теории множеств, линейной алгебры и теории дифференциальных уравнений линейных систем с постоянными параметрами. Далее рассматривается теория оптимального управления на основе классических вариационных методов и принципа максимума Понтрягина. Ряд глав посвящен изложению методов расчета и проектирования систем оптимальных по отношению к различным критериям оптимальности (максимуму быстродействия, расходу топлива, комбинированному и квадратичному критериям). Как правило, результаты синтеза доведены до рабочего алгоритма или блок-схемы ана...
107.97М, РУС.
Интегральные преобразования в задачах теории упругости — обложка книги.
Интегральные преобразования в задачах теории упругости (Уфлянд Я. С.) 01.08.2024
В книге дается систематическое изложение одного из эффективных методов современной математической физики - метода интегральных преобразований применительно к задачам теории упругости. Исследуются классы плоских и пространственных задач упругого равновесия, разрешимых с помощью интегральных преобразований. Помимо классических вопросов, рассмотрены некоторые сложные смешанные задачи, служившие предметом оригинальных работ последних лет. В настоящее издание включены некоторые дополнительные вопросы связанные с методом парных интегральных уравнений.
41.35М, РУС.
Численные методы анализа — обложка книги.
Численные методы анализа (Демидович Б. П., Марон И. А., Шувалова Э. З.) 27.11.2023
В книге излагаются избранные вопросы вычислительной математики, и по содержанию она является продолжением учебного пособия Б.П. Демидовича и И.А. Марона «Основы вычислительной математики». Настоящее, третье издание отличается от предыдущего более доходчивым изложением. Добавлены новые примеры. Рассчитана на студентов технических, экономических и педагогических институтов. Может быть использована также инженерами, вычислителями и лицами, работающими в области прикладной математики.
26.29М, РУС.
Методы интегрирования обыкновенных дифференциальных уравнений — обложка книги.
Методы интегрирования обыкновенных дифференциальных уравнений (Матвеев Н. М.) 27.07.2023
Учебник для механико-математических факультетов университетов по курсу дифференциальных уравнений. В книге даются основные понятия и определения теории обыкновенных дифференциальных уравнений, излагаются наиболее важные методы интегрирования, доказываются теоремы существования решений и исследуются свойства последних. Может использоваться в педагогических институтах и технических вузах, особенно будет полезна студентам-заочникам и лицам, самостоятельно изучающим теорию обыкновенных дифференциальных уравнений.
59.57М, РУС.
Составление дифференциальных уравнений — обложка книги.
Составление дифференциальных уравнений (Пономарев К. К.) 25.07.2023
Учебное пособие для математических, физических, механических, химических, биологических, геофизических, экономических факультетов университетов, педагогических институтов и втузов. Книга является руководством по составлению обыкновенных дифференциальных уравнений, а также простейших уравнений в частных производных. Она адресована широкому кругу лиц, встречающихся с дифференциальными уравнениями в учебной, производственной и научно-исследовательской работе.
35.41М, РУС.
Численные методы анализа. Приближение функций, дифференциальные уравнения — обложка книги.
Численные методы анализа. Приближение функций, дифференциальные уравнения (Демидович Б. П., Марон И. А., Шувалова Э. З.) 29.03.2023
В книге излагаются избранные вопросы вычислительной математики применительно к программе втузов. По содержанию книга является продолжением учебного пособия для втузов Б. П. Демидовича и И. А. Марона «Основы вычислительной математики», выпущенного Физматгизом в 1960 г., и представляет собой учебное пособие для студентов технических, экономических и педагогических высших учебных заведений по указанным в оглавлении разделам курса приближенных вычислений. Может быть использована также инженерами, вычислителями и лицами, работающими в области прикладной математики.
11.65М, РУС.
Оптимальные процессы в конфликтных ситуациях — обложка книги.
Оптимальные процессы в конфликтных ситуациях (Гаврилов В. М.) 21.03.2023
В книге рассматриваются задачи оптимизации процессов, протекающих в конфликтной ситуации, когда управление процессом осуществляется двумя противодействующими сторонами. Исследуются непрерывные, описываемые обыкновенными дифференциальными уравнениями, и дискретные, описываемые разностными уравнениями процессы. Оптимальность процесса понимается в смысле минимакса или максимина функционала от фазовых координат процесса по управляющим параметрам противодействующих сторон в случае строгого соперничества и в смысле максимума функционала для каждой из управляющих сторон при нестрогом соперничестве.
5.11М, РУС.
Теория управления движением. Линейные системы — обложка книги.
Теория управления движением. Линейные системы (Красовский Н. Н.) 20.03.2023
«В настоящей монографии рассматриваются некоторые математические задачи из теории управляемых систем. Именно, в книге изучаются следующие две проблемы: (1) задача об управлении, т. е. задача об определении управляющих сил, которые переводят динамическую систему в заданное состояние; (2) задача о наблюдении, т. е. задача о вычислении текущих координат движущегося объекта по доступным наблюдению величинам. Эти задачи изучаются для управляемых движений, описываемых линейными или квазилинейными обыкновенными дифференциальными уравнениями…»
16.86М, РУС.