Dynamical systems. Differential equations, maps and chaotic behaviour
Автор(ы): | Arrowsmith D. K., Place C. M.
06.10.2007
|
Год изд.: | 1992 |
Описание: | В книге описаны различные динамические системы, приведены упражнения по всем имеющимся разделам. |
Оглавление: |
Обложка книги.
1. Introduction [1]1.1 Preliminary ideas [1] 1.1.1 Existence and uniqueness [1] 1.1.2 Geometrical representation [3] 1.2 Autonomous equations [6] 1.2.1 Solution curves and the phase portrait [6] 1.2.2 Phase portraits and dynamics [11] 1.3 Autonomous systems in the plane [12] 1.4 Construction of phase portraits in the plane [17] 1.4.1 Use of calculus [17] 1.4.2 Isoclines [20] 1.5 Flows and evolution [23] Exercises [27] 2. Linear systems [35] 2.1 Linear changes of variable [35] 2.2 Similarity types for 2 x 2 real matrices [38] 2.3 Phase portraits for canonical systems in the plane [43] 2.3.1 Simple canonical systems [43] 2.3.2 Non-simple canonical systems [46] 2.4 Classification of simple linear phase portraits in the plane [48] 2.4.1 Phase portrait of a simple linear system [48] 2.4.2 Types of canonical system and qualitative equivalence [50] 2.4.3 Classification of linear systems [52] 2.5 The evolution operator [52] 2.6 Affine systems [55] 2.7 Linear systems of dimension greater than two [57] 2.7.1 Three-dimensional systems [57] 2.7.2 Four-dimensional systems [61] 2.7.3 n-Dimensional systems [62] Exercises [63] 3. Non-linear systems in the plane [71] 3.1 Local and global behaviour [71] 3.2 Linearization at a fixed point [74] 3.3 The linearization theorem [77] 3.4 Non-simple fixed points [81] 3.5 Stability of fixed points [84] 3.6 Ordinary points and global behaviour [93] 3.6.1 Ordinary points [93] 3.6.2 Global phase portraits [95] 3.7 First integrals [96] 3.8 Limit points and limit cycles [101] 3.9 Poincare- Bendixson theory [105] Exercises [110] 4. Flows on поп-planar phase spaces [120] 4.1 Fixed points [120] 4.1.1 Hyperbolic fixed points [120] 4.1.2 N on-hyperbolic fixed points [125] 4.2 Closed orbits [129] 4.2.1 Poincare maps and hyperbolic closed orbits [129] 4.2.2 Topolofiical classification of hyperbolic closed orbits [132] 4.2.3 Periodic orbits and quasi-periodic motion [136] 4.3 Attracting sets and attractors [138] 4.3.1 Trapping regions for Poincare maps [140] 4.3.2 Saddle points in attracting sets [143] 4.4 Further integrals [147] 4.4.1 Hamilton's equations [148] 4.4.2 Poincare maps of Hamiltonian flows [152] Exercises [155] 5 Applications I: planar phase spaces [162] 5.1 Linear models [162] 5.1.1 A mechanical oscillator [162] 5.1.2 Electrical circuits [167] 5.1.3 Economics [170] 5.1.4 Coupled oscillators [172] 5.2 Afilne models [175] 5.2.1 The forced harmonic oscillator [176] 5.2.2 Resonance [177] 5.3 Non-linear models [179] 5.3.1 Competing species [180] 5.3.2 Volterra-Lotka equations [183] 5.3.3 The Holling tanner model [185] 5.4 Relaxation oscillations [188] 5.4.1 Van der Pol oscillator [188] 5.4.2 Jumps and regularization [192] 5.5.Piecewise modelling [195] 5.5.1 The jump assumption and piecewise models [196] 5.5.2 A limit cycle from linear equations [198] Exercises [202] 6 Applications II rum-planar pliasc spaces, families of systems and bifurcations [212] 6.1 The Zeeman models of heartbeat and nerve impulse [212] 6.2 A model оГ animal conflict [218] 6.3 Families of differential equations and bifurcations [223] 6.3.1 introductory remarks [223] 6.3.2 Saddle-node bifurcation [226] 6.3.3 Hopf bifurcation [228] 6.4 A mathematical model of tumour growth [232] 6.4.1 Construction of the model [232] 6.4.2 An analysis of the dynamics [233] 6.5 Some bifurcations in families of one-dimensional maps [240] 6.5.1 The fold bifurcation [240] 6.5.2 The flip bifurcation [242] 6.5.3 The logistic map [245] 6.6 Some bifurcations in families of Iwo-dimensionaJ maps [251] 6.6.1 The child on a swing [251] 6.6.2 The Duffing equation [254] 6.7 Area-preserving maps, homoclinic tangles and strange attractors [259] 6.7.1 Introductory remarks [259] 6.7.2 Periodic orbits and island chains [261] 6.7.3 Chaotic orbits and homoclinic tangles [264] 6.7.4 Strange attracting sets [267] 6.8 Symbolic dynamics [271] 6.9 New directions [279] 6.9.1 Introductory remarks [279] 6.9.2 Iterated function schemes [280] 6.9.3 Cellular automata [284] Exercises [288] Bibliography [303] Hints to lixcrcises [306] Index [326] |
Формат: | djvu |
Размер: | 5687148 байт |
Язык: | ENG |
Рейтинг: | 128 |
Открыть: | Ссылка (RU) |