Приближенные методы анализа потенциальной точности в нелинейных навигационных задачах

Автор(ы):Степанов О. А.
13.06.2013
Год изд.:1986
Описание: В обзоре применительно к задачам обработки навигационной информации излагаются приближенные методы анализа потенциальной точности оценивания при нелинейной зависимости измеряемых величин от оцениваемых параметров. Проанализированы особенности применения классической (небайесовской) и байесовской теории оценивания в задачах обработки навигационной информации. Рассмотрены методы нахождения нижних границ точности, устанавливаемых с использованием неравенства Рао—Крамера, которое в обзоре излагается достаточно подробно в рамках байесовского подхода. Для специального класса нелинейных функций, ограниченных конусом или цилиндром, отыскиваются верхние границы точности. Обсуждается связь между границами точности и решением ковариационного уравнения, соответствующего задачам фильтрации или сглаживания при линейных измерениях. При составлении обзора использованы материалы отечественных и зарубежных работ, вышедших в основном после 1970 г. Обзор адресован научным и инженерно-техническим работникам, занимающимся статистической обработкой навигационной информации.
Оглавление:
Приближенные методы анализа потенциальной точности в нелинейных навигационных задачах — обложка книги. Обложка книги.
Введение [1]
1. Основы теории оценивания и ее применения в задачах обработки навигационной информации [3]
  1.1. Основные положения байесовского подхода [4]
  1.2. Особенности небайесовского подхода. Сравнительная характеристика двух подходов [9]
  1.3. Неравенство Рао—Крамера [12]
  1.4. Основы теории фильтрации гауссовских марковских последовательностей [19]
  1.5. Использование метода Монте-Карло при решении задач оценивания [24]
  1.6. Особенности применения теории оценивания к задачам обработки навигационной информации [27]
  1.7. Выводы [36]
2. Приближенные методы анализа потенциальной точности, основанные на использовании неравенства Рао—Крамера [37]
  2.1. Неравенство Рао—Крамера в задачах фильтрации и сглаживания марковских последовательностей [37]
  2.2. Вычисление нижней границы при оценивании квазидетерминированных последовательностей [43]
  2.3. Вычисление нижней границы при наличии ошибок измерения, зависящих от оцениваемой последовательности [50]
  2.4. Приближенные методы вычисления потенциальной точности и соответствующей нижней границы [56]
  2.5. Использование нижней границы при исследовании эффективности комплексирования различных источников информации [63]
  2.6. Выводы [68]
3. Методы приближенного анализа потенциальной точности в задачах со специальными нелинейностями [69]
  3.1. Задание класса нелинейных функций. Вспомогательные утверждения [70]
  3.2. Вычисление верхней границы для случая нелинейностей, ограниченных конусом [75]
  3.3. Вычисление верхней границы для случая нелинейностей, ограниченных цилиндром [81]
  3.4. Выводы [83]
Заключение [83]
Литература [84]
Формат: djvu
Размер:1927836 байт
Язык:РУС
Рейтинг: 163 Рейтинг
Открыть: Ссылка (RU)