Комбинаторные методы в теории случайных процессов
Автор(ы): | Такач Л.
03.03.2016
|
Год изд.: | 1971 |
Описание: | В книге излагаются комбинаторные методы решения обширного класса задач теории случайных процессов. Автор начинает с рассмотрения классических задач и постепенно переходит к постановке более сложных современных проблем. Книга предназначена в первую очередь для специалистов по теории вероятностей и ее применениям, но она, несомненно, заинтересует и читателей других специальностей, так как комбинаторные методы широко используются и в ряде других дисциплин. Она доступна аспирантам и студентам старших курсов университетов и пединститутов. |
Оглавление: |
Обложка книги.
От редактора перевода [5]Предисловие [6] Глава 1. Теорема о баллотировке [7] § 1. Введение [7] § 2. Обобщение классической теоремы о баллотировке [8] § 3. Задачи [13] Глава 2. Флуктуации сумм случайных величин [16] § 4. Циклически переставляемые случайные величины [16] § 5. Переставляемые случайные величины и независимые одинаково распределенные случайные величины [17] § 6. Распределение максимума последовательности [20] § 7. Дискретное обобщение классической теоремы о разорении [25] § 8. Распределение максимума последовательности [31] § 9. Распределение максимума для двойственных последовательностей [34] § 10. Примеры [35] § 11. Другие методы [38] § 12. Задачи [42] Глава 3. Флуктуации выборочных функций случайных процессов [45] § 13. Случайные процессы с циклически переставляемыми приращениями [45] § 14. Случайные процессы с переставляемыми приращениями и случайные процессы со стационарными независимыми приращениями [46] § 15. Распределение верхней Грани значений процесса [52] § 16. Континуальное обобщение классической теоремы о разорении [58] § 17. Распределение верхней грани значений процесса [64] § 18. Распределения верхних граней значений двойственных процессов [67] § 19. Примеры [68] § 20. Задачи [78] Глава 4. Случайные блуждания [81] § 21. Случайные процессы с переставляемыми приращениями и случайные процессы со стационарными независимыми приращениями, принимающие целые значения [81] § 22. Процесс случайного блуждания [88] § 23. Броуновское движение [90] § 24. Случайные процессы со стационарными независимыми приращениями, не имеющие отрицательных скачков [93] § 25. Случайные процессы со стационарными независимыми приращениями [99] § 26. Задачи [101] Глава 5. Теория очередей [103] § 27. Очереди к одному обслуживающему прибору [103] § 28. флуктуации длины очереди [108] § 29. Флуктуации времени ожидания [121] § 30. Задачи [136] Глава 6. Процессы хранения и создания запасов [141] § 31 Процессы хранения и создания запасов [141] § 32. флуктуации содержимого водохранилища бесконечной емкости [141] § 33. Флуктуации содержимого водохранилища конечной емкости [147] § 34. Задачи [155] Глава 7. Процессы разорения [158] § 35. Процессы разорения в страховом деле [158] § 36. Задачи [170] Глава 8. Порядковые статистики [173] § 37. Другое обобщение теоремы о баллотировке [173] § 38. Порядковые статистики [180] § 39 Дискретные распределения [182] § 40. Непрерывные распределения [185] § 41. Задачи [194] Дополнение 1 [99] Решения [221] Предметный указатель [261] |
Формат: | djvu |
Размер: | 2496297 байт |
Язык: | РУС |
Рейтинг: | 125 |
Открыть: | Ссылка (RU) |