Introduction to Computational Chemistry

Автор(ы):Jensen Frank
06.10.2007
Год изд.:1999
Описание: Computational chemistry is rapidly emerging as a subfield of theoretical chemistry, where the primary focus is on solving chemically related problems by calculations. For the newcomer to the field there are three main problems: (1) Deciphering the code. The language of computational chemistry is littered with acronyms, what do these abbreviations stand for in terms of underlying assumptions and approximations? (2) Technical problems. How does one actually run the program and what does one look for in the output? (3) Quality assessment. How good is the number that has been calculated? Author of the book will help you understand these issues.
Оглавление:
Introduction to Computational Chemistry — обложка книги. Обложка книги.
1 Introduction [1]
  1.1 Background [2]
      Reference [5]
2 Force Field Methods [6]
  2.1 Introduction [6]
  2.2 The Force Field Energy [8]
    2.2.1 The Stretch Energy [8]
    2.2.2 The Bending Energy [11]
    2.2.3 The Out-of-plane Bending Energy [14]
    2.2.4 The Torsional Energy [15]
    2.2.5 The van der Waals Energy [18]
    2.2.6 The Electrostatic Energy [23]
    2.2.7 Cross Terms [25]
    2.2.8 Small Rings and Conjugated Systems [27]
    2.2.9 Comparing Energies of Structurally Different Molecules [29]
  2.3 Force Field Parameterization [30]
    2.3.1 Parameter Reductions in Force Fields [35]
    2.3.2 Force Fields for Metal Coordination Compounds [36]
    2.3.3 Universal Force Fields [39]
  2.4 Differences between Force Fields [39]
  2.5 Computational Considerations [42]
  2.6 Validation of Force Fields [44]
  2.7 Practical Considerations [46]
  2.8 Advantages and Limitations of Force Field Methods [47]
  2.9 Transition Structure Modelling [47]
    2.9.1 Modelling the TS as a Minimum Energy Structure [48]
    2.9.2 Modelling the TS as a Minimum Energy Structure on the Reactant/Product Energy Seam [48]
  2.10 Hybrid Force Field-Electronic Structure Methods [50]
      References [51]
3 Electronic Structure Methods [53]
  3.1 The Adiabatic and Born-Oppenheimer Approximations [53]
  3.2 Self-consistent Field Theory [57]
  3.3 The Energy of a Slater Determinant [59]
  3.4 Koopmans' Theorem [64]
  3.5 The Basis Set Approximation [65]
  3.6 Alternative Formulation of the Variational Problem [69]
  3.7 Restricted and Unrestricted Hartree-Fock [70]
  3.8 SCF Techniques [71]
    3.8.1 SCF Convergence [72]
    3.8.2 Use of Symmetry [75]
    3.8.3 Ensuring that the HF Energy is a Minimum [75]
    3.8.4 Initial Guess Orbitals [76]
    3.8.5 Direct SCF [77]
    3.8.6 Linear Scaling Techniques [80]
  3.9 Semi-Empirical Methods [81]
    3.9.1 Neglect of Diatomic Differential Overlap Approximation (NDDO) [82]
    3.9.2 Intermediate Neglect of Differential Overlap Approximation (INDO) [83]
    3.9.3 Complete Neglect of Differential Overlap Approximation (CNDO) [83]
  3.10 Parameterization [84]
    3.10.1 Modified Intermediate Neglect of Differential Overlap (MINDO) [84]
    3.10.2 Modified NDDO Models [85]
    3.10.3 Modified Neglect of Diatomic Overlap (MNDO) [86]
    3.10.4 Austin Model 1 (AMI) [87]
    3.10.5 Modified Neglect of Diatomic Overlap Parametric Method Number 3 (MNDO-PM3) [88]
    3.10.6 The MNDO/d Method [89]
    3.10.7 Semi-Ab Initio Method 1 [90]
  3.11 Performance of Semi-empirical Methods [90]
  3.12 Extended Htickel Theory [92]
    3.12.1 Simple Htickel Theory [94]
  3.13 Limitations and Advantages of Semi-empirical Methods [94]
      References [96]
4 Electron Correlation Methods [98]
  4.1 Excited Slater Determinants [99]
  4.2 Configuration Interaction [101]
    4.2.1 CI Matrix Elements [103]
    4.2.2 Size of the CI Matrix [105]
    4.2.3 Truncated CI Methods [107]
    4.2.4 Direct CI Methods [109]
  4.3 Illustrating how CI Accounts for Electron Correlation, and the RHF Dissociation Problem [109]
  4.4 The UHF Dissociation and the Spin Contamination Problem [112]
  4.5 Size Consistency and Size Extensivity [117]
  4.6 Multi-configurational Self-consistent Field [117]
  4.7 Multi-reference Configuration Interaction [122]
  4.8 Many-body Perturbation Theory [123]
    4.8.1 M(?)ller-Plesset Perturbation Theory [126]
    4.8.2 Unrestricted and Projected M(?)ller-Plesset Methods [131]
  4.9 Coupled Cluster Methods [132]
    4.9.1 Truncated Coupled Cluster Methods [134]
  4.10 Connections between Coupled Cluster, Configuration Interaction and Perturbation Theory [136]
  4.11 Methods Involving Interelectronic Distances [140]
  4.12 Direct Methods [142]
  4.13 Localized Orbital Methods [144]
  4.14 Summary of Electron Correlation Methods [144]
  4.15 Excited States [147]
      References [148]
5 Basis Sets [150]
  5.1 Slater and Gaussian Type Orbitals [150]
  5.2 Classification of Basis Sets [151]
  5.3 Even- and Well-tempered Basis Sets [155]
  5.4 Contracted Basis Sets [156]
    5.4.1 Pople Style Basis Sets [158]
    5.4.2 Dunning-Huzinaga Basis Sets [160]
    5.4.3 MINI, MIDI and MAXI Basis Sets [161]
    5.4.4 Atomic Natural Orbitals Basis Sets [161]
    5.4.5 Correlation Consistent Basis Sets [162]
  5.5 Extrapolation Procedures [164]
  5.6 Isogyric and Isodesmic Reactions [169]
  5.7 Effective Core Potential Basis Sets [171]
  5.8 Basis Set Superposition Errors [172]
  5.9 Pseudospectral Methods [174]
      References [175]
6 Density Functional Theory [177]
  6.1 Local Density Methods [182]
  6.2 Gradient Corrected Methods [184]
  6.3 Hybrid Methods [187]
  6.4 Performance [188]
  6.5 Computational Considerations [190]
      References [193]
7 Valence Bond Methods [195]
  7.1 Classical Valence Bond [195]
  7.2 Spin Coupled Valence Bond [197]
  7.3 Generalized Valence Bond [202]
      References [203]
8 Relativistic Methods [204]
  8.1 Connection Between the Dirac and Schrodinger Equations [207]
  8.2 Many-particle Systems [210]
  8.3 Four-component Calculations [213]
      References [216]
9 Wave Function Analysis [217]
  9.1 Population Analysis Based on Basis Functions [217]
  9.2 Population Analysis Based on the Electrostatic Potential [220]
  9.3 Population Analysis Based on the Wave Function [223]
  9.4 Localized Orbitals [227]
  9.5 Natural Orbitals [229]
  9.6 Natural Atomic Orbital and Natural Bond Orbital Analysis [230]
  9.7 Computational Considerations [232]
  9.8 Examples [232]
      References [234]
10 Molecular Properties [235]
  10.1 Examples [236]
    10.1.1 External Electric Field [236]
    10.1.2 External Magnetic Field [237]
    10.1.3 Internal Magnetic Moment [238]
    10.1.4 Geometry Change [238]
    10.1.5 Mixed Derivatives [238]
  10.2 Perturbation Methods [240]
  10.3 Derivative Techniques [240]
  10.4 Lagrangian Techniques [242]
  10.5 Coupled Perturbed Hartree-Fock [244]
  10.6 Electric Field Perturbation [247]
  10.7 Magnetic Field Perturbation [248]
    10.7.1 External Magnetic Field [248]
    10.7.2 Nuclear Spin [250]
    10.7.3 Gauge Dependence of Magnetic Properties [252]
  10.8 Geometry Perturbations [253]
  10.9 Propagator Methods [257]
  10.10 Property Basis Sets [261]
      References [262]
11 Illustrating the Concepts [264]
  11.1 Geometry Convergence [264]
    11.1.1 Ab Initio Methods [264]
    11.1.2 DFT Methods [267]
  11.2 Total Energy Convergence [267]
  11.3 Dipole Moment Convergence [270]
    11.3.1 Ab Initio Methods [270]
    11.3.2 DFT Methods [271]
  11.4 Vibrational Frequencies'Convergence [272]
    11.4.1 Ab Initio Methods [272]
    11.4.2 DFT Methods [273]
  11.5 Bond Dissociation Curve [274]
    11.5.1 Basis Set Effect at the HF Level [274]
    11.5.2 Performance of Different Types of Wave Function [276]
    11.5.3 DFT Methods [283]
  11.6 Angle Bending Curve [284]
  11.7 Problematic Systems [285]
    11.7.1 The Geometry of FOOF [285]
    11.7.2 The Dipole Moment of CO [286]
    11.7.3 The Vibrational Frequencies of O(?) [287]
  11.8 Relative Energies of C(?)H(?) Isomers [289]
      References [294]
12 Transition State Theory and Statistical Mechanics [296]
  12.1 Transition State Theory [296]
  12.2 Statistical Mechanics [298]
    12.2.1 q(?) [299]
    12.2.2 q(?) [300]
    12.2.3 q(?) [301]
    12.2.4 q(?) [302]
  12.3 Enthalpy and Entropy Contributions [303]
      References [307]
13 Change of Coordinate System [309]
  13.1 Vibrational Normal Coordinates [312]
  13.2 Energy of a Slater Determinant [314]
  13.3 Energy of a CI Wave Function [315]
      Reference [315]
14 Optimization Techniques [316]
  14.1 Steepest Descent [317]
  14.2 Conjugate Gradient Methods [318]
  14.3 Newton-Raphson Methods [318]
    14.3.1 Step Control [319]
    14.3.2 Obtaining the Hessian [321]
    14.3.3 Storing and Diagonalizing the Hessian [321]
  14.4 Choice of Coordinates [322]
  14.5 Transition Structure Optimization [327]
    14.5.1 Methods Based on Interpolation Between Reactant and Product [327]
    14.5.2 Linear and Quadratic Synchronous Transit [328]
    14.5.3 "Saddle" Optimization Method [329]
    14.5.4 The Chain Method [329]
    14.5.5 The Self Penalty Walk Method [330]
    14.5.6 The Sphere Optimization Technique [331]
    14.5.7 Methods Based on Local Information [333]
    14.5.8 Gradient Norm Minimizations [333]
    14.5.9 Newton-Raphson Methods [333]
    14.5.10 Gradient Extremal Methods [338]
  14.6 Constrained Optimization Problems [338]
  14.7 Locating the Global Minimum and Conformational Sampling [339]
    14.7.1 Stochastic and Monte Carlo Methods [341]
    14.7.2 Molecular Dynamics [341]
    14.7.3 Simulated Annealing [342]
    14.7.4 Genetic Algorithms [342]
    14.7.5 Diffusion Methods [343]
    14.7.6 Distance Geometry Methods [343]
  14.8 Intrinsic Reaction Coordinate Methods [344]
      References [346]
15 Qualitative Theories [347]
  15.1 Frontier Molecular Orbital Theory [347]
  15.2 Concepts from Density Functional Theory [351]
  15.3 Qualitative Molecular Orbital Theory [353]
  15.4 Woodward-Hoffmann Rules [355]
  15.5 The Bell-Evans-Polanyi Principle/Hammond Postulate/Marcus Theory [364]
  15.6 More O'Ferrall-Jenks Diagrams [368]
      References [371]
16 Simulations, Time-dependent Methods and Solvation Models [372]
  16.1 Simulation Methods [373]
    16.1.1 Free Energy Methods [380]
    16.1.2 Thermodynamic Perturbation Methods [380]
    16.1.3 Thermodynamic Integration Methods [381]
  16.2 Time-dependent Methods [383]
    16.2.1 Classical Methods [383]
    16.2.2 Langevin Methods [388]
    16.2.3 Quantum Methods [389]
    16.2.4 Reaction Path Methods [390]
  16.3 Continuum Solvation Models [392]
      References [397]
17 Concluding Remarks [400]
Appendix A [402]
Appendix В [407]
  The Variational Principle [407]
  The Hohenberg-Kohn Theorems [408]
  The Adiabatic Connection Formula [409]
      Reference [410]
Appendix С [411]
  First and Second Quantization [411]
      Reference [412]
Appendix D [413]
  Atomic Units [413]
Appendix E [414]
  Z-matrix Construction [414]
Index [422]
Формат: djvu
Размер:5167192 байт
Язык:ENG
Рейтинг: 98 Рейтинг
Открыть: Ссылка (RU)